Lasso

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stagewise Lasso Stagewise Lasso

Many statistical machine learning algorithms (in regression or classification) minimize either an empirical loss function as in AdaBoost, or a penalized empirical loss as in SVM. A single regularization tuning parameter controls the trade-off between fidelity to the data and generalibility, or equivalently between bias and variance. When this tuning parameter changes, a regularization “path” of...

متن کامل

Relaxed Lasso

The Lasso is an attractive regularisation method for high dimensional regression. It combines variable selection with an efficient computational procedure. However, the rate of convergence of the Lasso is slow for some sparse high dimensional data, where the number of predictor variables is growing fast with the number of observations. Moreover, many noise variables are selected if the estimato...

متن کامل

Random Lasso.

We propose a computationally intensive method, the random lasso method, for variable selection in linear models. The method consists of two major steps. In step 1, the lasso method is applied to many bootstrap samples, each using a set of randomly selected covariates. A measure of importance is yielded from this step for each covariate. In step 2, a similar procedure to the first step is implem...

متن کامل

Boosted Lasso

In this paper, we propose the Boosted Lasso (BLasso) algorithm that is able to produce an approximation to the complete regularization path for general Lasso problems. BLasso is derived as a coordinate descent method with a fixed small step size applied to the general Lasso loss function (L1 penalized convex loss). It consists of both a forward step and a backward step and uses differences of f...

متن کامل

Stagewise Lasso

Many statistical machine learning algorithms minimize either an empirical loss function as in AdaBoost, or a penalized empirical loss as in Lasso or SVM. A single regularization tuning parameter controls the trade-off between fidelity to the data and generalizability, or equivalently between bias and variance. When this tuning parameter changes, a regularization “path” of solutions to the minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Academic Emergency Medicine

سال: 2009

ISSN: 1069-6563,1553-2712

DOI: 10.1111/j.1553-2712.2009.0451c.x